
D03 – Partial Differential Equations

D03PCF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PCF integrates a system of linear or nonlinear parabolic partial differential equations (PDEs) in one
space variable. The spatial discretisation is performed using finite differences, and the method of lines
is employed to reduce the PDEs to a system of ordinary differential equations (ODEs). The resulting
system is solved using a backward differentiation formula method.

2 Specification

SUBROUTINE D03PCF(NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NPTS, X,
1 ACC, W, NW, IW, NIW, ITASK, ITRACE, IND, IFAIL)
INTEGER NPDE, M, NPTS, NW, IW(NIW), NIW, ITASK, ITRACE,
1 IND, IFAIL
real TS, TOUT, U(NPDE,NPTS), X(NPTS), ACC, W(NW)
EXTERNAL PDEDEF, BNDARY

3 Description

D03PCF integrates the system of parabolic equations:

NPDE∑
j=1

Pi,j

∂Uj

∂t
+Qi = x−m ∂

∂x
(xmRi), i = 1, 2, . . . ,NPDE, a ≤ x ≤ b, t ≥ t0, (1)

where Pi,j , Qi and Ri depend on x, t, U , Ux and the vector U is the set of solution values

U(x, t) = [U1(x, t), . . . , UNPDE(x, t)]T , (2)

and the vector Ux is its partial derivative with respect to x. Note that Pi,j , Qi and Ri must not depend
on ∂U

∂t .

The integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and b = xNPTS

are the leftmost and rightmost points of a user-defined mesh x1, x2, . . . , xNPTS. The co-ordinate system
in space is defined by the value of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical polar
co-ordinates and m = 2 for spherical polar co-ordinates. The mesh should be chosen in accordance with
the expected behaviour of the solution.

The system is defined by the functions Pi,j , Qi and Ri which must be specified in a subroutine PDEDEF
supplied by the user.

The initial values of the functions U(x, t) must be given at t = t0. The functions Ri, for i = 1,2,...,NPDE,
which may be thought of as fluxes, are also used in the definition of the boundary conditions for each
equation. The boundary conditions must have the form

βi(x, t)Ri(x, t, U, Ux) = γi(x, t, U, Ux), i = 1, 2, . . . ,NPDE, (3)

where x = a or x = b.

The boundary conditions must be specified in a subroutine BNDARY provided by the user.

The problem is subject to the following restrictions:

(i) t0 < tout, so that integration is in the forward direction;
(ii) Pi,j , Qi and the flux Ri must not depend on any time derivatives;
(iii) The evaluation of the functions Pi,j , Qi and Ri is done at the mid-points of the mesh intervals

by calling the routine PDEDEF for each mid-point in turn. Any discontinuities in these functions
must therefore be at one or more of the mesh points x1, x2, . . . , xNPTS;

[NP3390/19/pdf] D03PCF.1

D03PCF D03 – Partial Differential Equations

(iv) At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
problem; and

(v) If m > 0 and x1 = 0.0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done by either specifying the solution at x = 0.0 or
by specifying a zero flux there, that is βi = 1.0 and γi = 0.0. See also Section 8 below.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at mesh
points. For simple problems in Cartesian co-ordinates, this system is obtained by replacing the space
derivatives by the usual central, three-point finite-difference formula. However, for polar and spherical
problems, or problems with nonlinear coefficients, the space derivatives are replaced by a modified three-
point formula which maintains second-order accuracy. In total there are NPDE × NPTS ODEs in the
time direction. This system is then integrated forwards in time using a backward differentiation formula
method.

4 References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Berzins M, Dew P M and Furzeland R M (1989) Developing software for time-dependent problems
using the method of lines and differential-algebraic integrators Appl. Numer. Math. 5 375–397

[3] Skeel R D and Berzins M (1990) A method for the spatial discretization of parabolic equations in
one space variable SIAM J. Sci. Statist. Comput. 11 (1) 1–32

[4] Dew P M and Walsh J (1981) A set of library routines for solving parabolic equations in one space
variable ACM Trans. Math. Software 7 295–314

5 Parameters

1: NPDE — INTEGER Input

On entry: the number of PDEs in the system to be solved.

Constraint: NPDE ≥ 1.

2: M — INTEGER Input

On entry: the co-ordinate system used, m:

M = 0
indicates Cartesian co-ordinates,

M = 1
indicates cylindrical polar co-ordinates,

M = 2
indicates spherical polar co-ordinates.

Constraint: 0 ≤ M ≤ 2.

3: TS — real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS = TOUT.

Constraint: TS < TOUT.

4: TOUT — real Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF — SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the functions Pi,j , Qi and Ri which define the system of PDEs. PDEDEF
is called approximately midway between each pair of mesh points in turn by D03PCF.

D03PCF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PCF

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, U, UX, P, Q, R, IRES)
INTEGER NPDE, IRES
real T, X, U(NPDE), UX(NPDE), P(NPDE,NPDE), Q(NPDE),
1 R(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: X — real Input
On entry: the current value of the space variable x.

4: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t), for i = 1, 2, . . . ,NPDE.

5: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x , for i = 1, 2, . . . ,NPDE.

6: P(NPDE,NPDE) — real array Output
On exit: P(i, j) must be set to the value of Pi,j(x, t, U, Ux), for i, j = 1, 2, . . . ,NPDE.

7: Q(NPDE) — real array Output
On exit: Q(i) must be set to the value of Qi(x, t, U, Ux), for i, j = 1, 2, . . . ,NPDE.

8: R(NPDE) — real array Output
On exit: R(i) must be set to the value of Ri(x, t, U, Ux), for i = 1, 2, . . . ,NPDE.

9: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator set to IFAIL = 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PCF returns to the calling (sub)program with the error indicator set to IFAIL = 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PCF is called.
Parameters denoted as Input must not be changed by this procedure.

6: BNDARY — SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions βi and γi which define the boundary conditions as in equation
(3).

[NP3390/19/pdf] D03PCF.3

D03PCF D03 – Partial Differential Equations

Its specification is:

SUBROUTINE BNDARY(NPDE, T, U, UX, IBND, BETA, GAMMA, IRES)
INTEGER NPDE, IBND, IRES
real T, U(NPDE), UX(NPDE), BETA(NPDE), GAMMA(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

4: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

5: IBND — INTEGER Input
On entry: IBND determines the position of the boundary conditions. If IBND = 0, then
BNDARY must set up the coefficients of the left-hand boundary x = a. Any other value of
IBND indicates that BNDARY must set up the coefficients of the right-hand boundary, x = b.

6: BETA(NPDE) — real array Output
On exit: BETA(i) must be set to the value of βi(x, t) at the boundary specified by IBND, for
i = 1, 2, . . . ,NPDE.

7: GAMMA(NPDE) — real array Output
On exit: GAMMA(i) must be set to the value of γi(x, t, U, Ux) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

8: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES = 2 indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL = 6.

IRES = 3 indicates to the integrator that the
current time step should be abandoned and a smaller time step used instead. The user
may wish to set IRES = 3 when a physically meaningless input or output value has been
generated. If the user consecutively sets IRES = 3, then D03PCF returns to the calling
(sub)program with the error indicator set to IFAIL = 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PCF is called.
Parameters denoted as Input must not be changed by this procedure.

7: U(NPDE,NPTS) — real array Input/Output

On entry: the initial values of U(x, t) at t = TS and the mesh points X(j), for j = 1,2,...,NPTS.

On exit: U(i, j) will contain the computed solution at t = TS.

8: NPTS — INTEGER Input

On entry: the number of mesh points in the interval [a, b].

Constraint: NPTS ≥ 3.

D03PCF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PCF

9: X(NPTS) — real array Input

On entry: the mesh points in the spatial direction. X(1) must specify the left-hand boundary, a,
and X(NPTS) must specify the right-hand boundary, b.

Constraint: X(1) < X(2) < . . . < X(NPTS).

10: ACC — real Input

On entry: a positive quantity for controlling the local error estimate in the time integration. If
E(i, j) is the estimated error for Ui at the jth mesh point, the error test is:

|E(i, j)| = ACC× (1.0 + |U(i, j)|).

Constraint: ACC > 0.0.

11: W(NW) — real array Workspace
12: NW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PCF is
called.

Constraint: NW ≥ (10+6×NPDE) × NPDE × NPTS + (21+3×NPDE) × NPDE + 7 × NPTS
+ 54.

13: IW(NIW) — INTEGER array Output

On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation
of the functions in each of the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the last backward differentiation formula method used.

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves an ODE residual evaluation followed by a back-substitution using the LU decomposition
of the Jacobian matrix.

The rest of the array is used as workspace.

14: NIW — INTEGER Input

On entry: the dimension of the array IW as declared in the (sub)program from which D03PCF is
called.

Constraint: NIW = NPDE × NPTS + 24.

15: ITASK — INTEGER Input

On entry: specifies the task to be performed by the ODE integrator. The permitted values of ITASK
and their meanings are detailed below:

ITASK = 1
normal computation of output values U at t = TOUT.

ITASK = 2
one step and return.

ITASK = 3
stop at first internal integration point at or beyond t = TOUT.

Constraint: 1 ≤ ITASK ≤ 3.

[NP3390/19/pdf] D03PCF.5

D03PCF D03 – Partial Differential Equations

16: ITRACE — INTEGER Input

On entry: the level of trace information required from D03PCF and the underlying ODE solver.
ITRACE may take the value −1, 0, 1, 2, or 3. If ITRACE < −1, then −1 is assumed and similarly
if ITRACE > 3, then 3 is assumed. If ITRACE = −1, no output is generated. If ITRACE = 0, only
warning messages from the PDE solver are printed on the current error message unit (see X04AAF).
If ITRACE > 0, then output from the underlying ODE solver is printed on the current advisory
message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration
and the time integration during the computation of the ODE system. The advisory messages are
given in greater detail as ITRACE increases. Users are advised to set ITRACE = 0, unless they are
experienced with the subchapter D02M–N of the NAG Fortran Library.

17: IND — INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND = 0
starts or restarts the integration in time.

IND = 1
continues the integration after an earlier exit from the routine. In this case, only the parameters
TOUT and IFAIL should be reset between calls to D03PCF.

Constraint: 0 ≤ IND ≤ 1.

On exit: IND = 1.

18: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, TOUT ≤ TS,

or (TOUT − TS) is too small,

or ITASK �= 1, 2 or 3,

or M �= 0, 1 or 2,

or M > 0 and X(1) < 0.0,

or X(i), for i = 1, 2, . . . ,NPTS are not ordered,

or NPTS < 3,

or NPDE < 1,

or ACC ≤ 0.0,

or IND �= 0 or 1,

or NW is too small,

or NIW is too small,

or D03PCF called initially with IND = 1.

IFAIL = 2

The underlying ODE solver cannot make any further progress, across the integration range from
the current point t = TS with the supplied value of ACC. The components of U contain the
computed values at the current point t = TS.

D03PCF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PCF

IFAIL = 3

In the underlying ODE solver, there were repeated errors or corrector convergence test failures on
an attempted step, before completing the requested task. The problem may have a singularity or
ACC is too small for the integration to continue. Integration was successful as far as t = TS.

IFAIL = 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to
3 in the user-supplied subroutines PDEDEF or BNDARY, when the residual in the underlying
ODE solver was being evaluated.

IFAIL = 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check his
problem formulation.

IFAIL = 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of the
user-supplied subroutines PDEDEF or BNDARY. Integration was successful as far as t = TS.

IFAIL = 7

The value of ACC is so small that the routine is unable to start the integration in time.

IFAIL = 8

In one of the user-supplied routines, PDEDEF or BNDARY, IRES was set to an invalid value.

IFAIL = 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE = 1 may provide more information. If the
problem persists, contact NAG.

IFAIL = 10

The required task has been completed, but it is estimated that a small change in ACC is unlikely
to produce any change in the computed solution. (Only applies when the user is not operating in
one step mode, that is when ITASK �= 2.)

IFAIL = 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current advisory message unit).

IFAIL = 12

Not applicable.

IFAIL = 13

Not applicable.

IFAIL = 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of
varying the accuracy parameter, ACC.

[NP3390/19/pdf] D03PCF.7

D03PCF D03 – Partial Differential Equations

8 Further Comments

The routine is designed to solve parabolic systems (possibly including some elliptic equations) with
second-order derivatives in space. The parameter specification allows the user to include equations with
only first-order derivatives in the space direction but there is no guarantee that the method of integration
will be satisfactory for such systems. The position and nature of the boundary conditions in particular
are critical in defining a stable problem. It may be advisable in such cases to reduce the whole system to
first-order and to use the Keller box scheme routine D03PEF.

The time taken by the routine depends on the complexity of the parabolic system and on the accuracy
requested.

9 Example

We use the example given in Dew and Walsh [4] which consists of an elliptic-parabolic pair of PDEs. The
problem was originally derived from a single third-order in space PDE. The elliptic equation is

1
r

∂

∂r

(
r2 ∂U1

∂r

)
= 4α

(
U2 + r

∂U2

∂r

)

and the parabolic equation is

(1− r2)
∂U2

∂t
=
1
r

∂

∂r

(
r

(
∂U2

∂r
− U2U1

))

where (r, t) ∈ [0, 1]× [0, 1]. The boundary conditions are given by

U1 =
∂U2

∂r
= 0 at r = 0,

and
∂

∂r
(rU1) = 0 and U2 = 0 at r = 1.

The first of these boundary conditions implies that the flux term in the second PDE,
(

∂U2
∂r − U2U1

)
, is

zero at r = 0.

The initial conditions at t = 0 are given by

U1 = 2αr and U2 = 1.0, for r ∈ [0, 1].

The value α = 1 was used in the problem definition. A mesh of 20 points was used with a circular mesh
spacing to cluster the points towards the right-hand side of the spatial interval, r = 1.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03PCF Example Program Text
* Mark 19 Revised. NAG Copyright 1999.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NPDE, NPTS, INTPTS, ITYPE, NEQN, NIW, NWK, NW
PARAMETER (NPDE=2,NPTS=20,INTPTS=6,ITYPE=1,NEQN=NPDE*NPTS,

+ NIW=NEQN+24,NWK=(10+6*NPDE)*NEQN,
+ NW=NWK+(21+3*NPDE)*NPDE+7*NPTS+54)

* .. Scalars in Common ..
real ALPHA

D03PCF.8 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PCF

* .. Local Scalars ..
real ACC, HX, PI, PIBY2, TOUT, TS
INTEGER I, IFAIL, IND, IT, ITASK, ITRACE, M

* .. Local Arrays ..
real U(NPDE,NPTS), UOUT(NPDE,INTPTS,ITYPE), W(NW),

+ X(NPTS), XOUT(INTPTS)
INTEGER IW(NIW)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL BNDARY, D03PCF, D03PZF, PDEDEF, UINIT

* .. Intrinsic Functions ..
INTRINSIC SIN

* .. Common blocks ..
COMMON /VBLE/ALPHA

* .. Data statements ..
DATA XOUT(1)/0.0e+0/, XOUT(2)/0.40e+0/,

+ XOUT(3)/0.6e+0/, XOUT(4)/0.8e+0/,
+ XOUT(5)/0.9e+0/, XOUT(6)/1.0e+0/

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PCF Example Program Results’
ACC = 1.0e-3
M = 1
ITRACE = 0
ALPHA = 1.0e0
IND = 0
ITASK = 1

*
* Set spatial mesh points
*

PIBY2 = 0.5e0*X01AAF(PI)
HX = PIBY2/(NPTS-1)
X(1) = 0.0e0
X(NPTS) = 1.0e0
DO 20 I = 2, NPTS - 1

X(I) = SIN(HX*(I-1))
20 CONTINUE

*
* Set initial conditions
*

TS = 0.0e0
TOUT = 0.1e-4
WRITE (NOUT,99999) ACC, ALPHA
WRITE (NOUT,99998) (XOUT(I),I=1,6)

*
* Set the initial values
*

CALL UINIT(U,X,NPTS)
DO 40 IT = 1, 5

IFAIL = -1
TOUT = 10.0e0*TOUT

*
CALL D03PCF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,U,NPTS,X,ACC,W,NW,IW,

+ NIW,ITASK,ITRACE,IND,IFAIL)
*
* Interpolate at required spatial points

[NP3390/19/pdf] D03PCF.9

D03PCF D03 – Partial Differential Equations

*
CALL D03PZF(NPDE,M,U,NPTS,X,XOUT,INTPTS,ITYPE,UOUT,IFAIL)
WRITE (NOUT,99996) TOUT, (UOUT(1,I,1),I=1,INTPTS)
WRITE (NOUT,99995) (UOUT(2,I,1),I=1,INTPTS)

40 CONTINUE
*
* Print integration statistics
*

WRITE (NOUT,99997) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (//’ Accuracy requirement = ’,e12.5,/’ Parameter ALPHA =’,

+ ’ ’,e12.3,/)
99998 FORMAT (’ T / X ’,6F8.4,/)
99997 FORMAT (’ Number of integration steps in time ’,

+ I4,/’ Number of residual evaluations of resulting ODE sys’,
+ ’tem’,I4,/’ Number of Jacobian evaluations ’,
+ ’ ’,I4,/’ Number of iterations of nonlinear solve’,
+ ’r ’,I4,/)

99996 FORMAT (1X,F6.4,’ U(1)’,6F8.4)
99995 FORMAT (8X,’U(2)’,6F8.4,/)

END
*

SUBROUTINE UINIT(U,X,NPTS)
* Routine for PDE initial conditon
* .. Scalar Arguments ..

INTEGER NPTS
* .. Array Arguments ..

real U(2,NPTS), X(NPTS)
* .. Scalars in Common ..

real ALPHA
* .. Local Scalars ..

INTEGER I
* .. Common blocks ..

COMMON /VBLE/ALPHA
* .. Executable Statements ..

DO 20 I = 1, NPTS
U(1,I) = 2.0e0*ALPHA*X(I)
U(2,I) = 1.0e0

20 CONTINUE
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,U,DUDX,P,Q,R,IRES)

* .. Scalar Arguments ..
real T, X
INTEGER IRES, NPDE

* .. Array Arguments ..
real DUDX(NPDE), P(NPDE,NPDE), Q(NPDE), R(NPDE),

+ U(NPDE)
* .. Scalars in Common ..

real ALPHA
* .. Common blocks ..

COMMON /VBLE/ALPHA
* .. Executable Statements ..

Q(1) = 4.0e0*ALPHA*(U(2)+X*DUDX(2))
Q(2) = 0.0e+0
R(1) = X*DUDX(1)

D03PCF.10 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PCF

R(2) = DUDX(2) - U(1)*U(2)
P(1,1) = 0.0e+0
P(1,2) = 0.0e0
P(2,1) = 0.0e+0
P(2,2) = 1.0e0 - X*X
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,U,UX,IBND,BETA,GAMMA,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NPDE

* .. Array Arguments ..
real BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE)

* .. Executable Statements ..
IF (IBND.EQ.0) THEN

BETA(1) = 0.0e+0
BETA(2) = 1.0e+0
GAMMA(1) = U(1)
GAMMA(2) = -U(1)*U(2)

ELSE
BETA(1) = 1.0e0
BETA(2) = 0.0e+0
GAMMA(1) = -U(1)
GAMMA(2) = U(2)

END IF
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03PCF Example Program Results

Accuracy requirement = 0.10000E-02
Parameter ALPHA = 0.100E+01

T / X 0.0000 0.4000 0.6000 0.8000 0.9000 1.0000

0.0001 U(1) 0.0000 0.8008 1.1988 1.5990 1.7958 1.8485
U(2) 0.9997 0.9995 0.9994 0.9988 0.9663 0.0000

0.0010 U(1) 0.0000 0.7982 1.1940 1.5841 1.7179 1.6734
U(2) 0.9969 0.9952 0.9937 0.9484 0.6385 0.0000

0.0100 U(1) 0.0000 0.7676 1.1239 1.3547 1.3635 1.2830
U(2) 0.9627 0.9495 0.8754 0.5537 0.2908 0.0000

0.1000 U(1) 0.0000 0.3908 0.5007 0.5297 0.5120 0.4744
U(2) 0.5468 0.4299 0.2995 0.1479 0.0724 0.0000

1.0000 U(1) 0.0000 0.0007 0.0008 0.0008 0.0008 0.0007
U(2) 0.0010 0.0007 0.0005 0.0002 0.0001 0.0000

[NP3390/19/pdf] D03PCF.11

D03PCF D03 – Partial Differential Equations

Number of integration steps in time 78
Number of residual evaluations of resulting ODE system 378
Number of Jacobian evaluations 25
Number of iterations of nonlinear solver 190

D03PCF.12 (last) [NP3390/19/pdf]

